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ABSTRACT

Many hydrological applications employ conceptual-lumped models to support water resource management techniques. This study aims to

evaluate the workability of applying a daily time-step conceptual-lumped model, HYdrological MODel (HYMOD), to the Headwaters Benue

River Basin (HBRB) for future water resource management. This study combines both local and global sensitivity analysis (SA) approaches

to focus on which model parameters most influence the model output. It also identifies how well the model parameters are defined in

the model structure using six performance criteria to predict model uncertainty and improve model performance. The results showed

that both SA approaches gave similar results in terms of sensitive parameters to the model output, which are also well-identified parameters

in the model structure. The more precisely the model parameters are constrained in the small range, the smaller the model uncertainties, and

therefore the better the model performance. The best simulation with regard to the measured streamflow lies within the narrow band of

model uncertainty prediction for the behavioral parameter sets. This highlights that the simulated discharges agree with the observations

satisfactorily, indicating the good performance of the hydrological model and the feasibility of using the HYMOD to estimate long time-

series of river discharges in the study area.
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HIGHLIGHTS

• Local and global sensitivity analysis (SA) approaches were used for SA and parameter identifiability.

• Both approaches gave similar results in terms of sensitive parameters for the model output.

• A group of sensitive parameters depends on the selected objective criterion.

• Precisely identified parameters reduce the model uncertainties and enhance the model performance.

• Sensitive, well-defined parameters and model performance increase with catchment size.
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GRAPHICAL ABSTRACT

1. INTRODUCTION

Hydrological models are considered useful and valuable tools in several aspects of water resource management. They are
increasingly being employed for simulating hydrological processes (Budhathoki et al. 2023; Velásquez et al. 2023), forecasting
extreme events like floods and droughts (Ich et al. 2022; Moore & Cole 2022), analyzing future climate change and land use
scenarios on available water resources and hydropower potential (Nonki et al. 2019, 2021b; Obahoundje et al. 2021;
Rahvareh et al. 2023). For the larger number of existing hydrological models that vary from physical-based to conceptual
models, the choice between the distributed, semi-distributed, and lumped-conceptual is very important for catchment hydrol-
ogy. Given the expense of semi-distributed and distributed models in terms of input data and computational resources, many

hydrological applications employ conceptual-lumped rainfall-runoff models to support water resource management tech-
niques. Their ability to work with minimal data and provide enough credible information means they are a useful tool in
many data-poor domains (Tegegne et al. 2017; Nonki et al. 2021c). All models are an imperfect simplification of the physical

process and therefore have an inherent uncertainty associated with them. In data-scarce regions, where accurate input data
are rarely available, the model uncertainty is compounded by input data uncertainties. Therefore, for science-based decision-
making, an evaluation of uncertainty sources in the model is necessary for improving the structure of the models and lowering

uncertainties (Refsgaard et al. 2006, 2007). This research topic was one of the three major objectives of the International
Association of Hydrological Sciences (IAHS) Panta Rhei Science Decade 2013–2022 (Montanari et al. 2013) and constitutes
one of the unsolved problems in hydrology (Bloschl et al. 2019).

Sensitivity and identifiability analyses are now invaluable strategies for model parameterization, calibration, and optimiz-

ation, as well as uncertainty quantification and reduction (Saltelli et al. 2006; Guse et al. 2020; Nonki et al. 2021c). The
former shows how errors in input data can affect model simulations (Saltelli 2002), even as the latter expresses how well
the parameter is defined in the model structure (Abebe et al. 2010). Although several studies have addressed this issue

(search for Shin et al. (2015); Song et al. (2015); Pianosi et al. (2016) and Devak & Dhanya (2017) for a complete review)
and new applications including data science and machine learning are being developed (Saltelli et al. 2021), there are still
some research challenges in this area (Razavi et al. 2021). Clarifying the relationship and position of SA in quantifying
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uncertainty as well as enhancing the use of SA to assist decision-making are two of the six most important challenges high-

lighted through Razavi et al. (2021). In addition, the majority of SA studies are based on one or two objective functions.
According to Guse et al. (2020), the use of multiple objective functions in SA and parameter identifiability studies is of para-
mount importance because this helps to identify the group of parameters that most influence each part of the hydrograph (e.g.

low and high flows) as well as the entire hydrograph (Boyle et al. 2000; Wagener et al. 2003).
Several studies have addressed this information gap (Li et al. 2021; Liang et al. 2021; Singh & Jha 2021; Tibangayuka et al.

2022). Singh& Jha (2021) investigated the impact of catchment size and simulation time steps in performing SA. They observed
that the sensitivity of some parameters does not depend on watershed size and simulation time step, while other parameters are

sensitive for small- andmedium-sizedwatersheds but not for largewatersheds at a daily time step. Li et al. (2021) investigated the
impact of SA on parameter optimization. The case studywas conducted in four watersheds in China by using the Soil andWater
Assessment Tool (SWAT)model and Sensitive Parameter Combinations (SPCs). They found that nomore than 10 sensitive par-

ameters could be identified out of 27 modifiable parameters for each watershed, suggesting that sensitivity parameter
optimization can greatly reduce the computational cost of SWAT streamflow simulations while ensuring their accuracy.
Liang et al. (2021) explored the effect of sensitivity and uncertainty evaluation for discharge prediction in the Yalong River

Basin (YLRB) of Southwest China using the SWAT model and three optimization algorithms. Their results indicated that
some parameters could significantly affect the discharge in the study catchment, while complex parameter combinations
reacted differently under the above-mentioned three optimization algorithms. Tibangayuka et al. (2022) quantified the impli-

cations of Hydrologiska Byrans Vattenavdelning (HBV) model parameter uncertainties through sensitivity and identifiability
analyses in the Wami Ruvu Basin, Tanzania. They found that the parameter identifiability of the HBV model varies spatially
in the basin, while parameter uncertainties significantly influence the model output. All these studies have proven and strongly
recommended that a comprehensive parameter sensitivity and uncertainty analysis is a vital step in setting up any hydrological

model to reduce the number of parameters while still addressing all relevant hydrological processes.
These studies are all context-specific; each catchment study has a relatively unique aggregate of geographical, climatic, geo-

logical and hydrological conditions. Therefore, the predictive ability of a rainfall-runoff model depends on its structure, the

quality of the input data, both in terms of spatial and temporal resolution, and the experiment design and execution. The pur-
pose of this work is to assess the applicability of a daily conceptual time-step rainfall-runoff model, HYdrological MODel
(HYMOD), to the Headwaters Benue River Basin (HBRB) for future water resource management and policy. The study pro-

poses using two approaches of SA to identify which model parameters most influence the model output and quantify how
well the parameters are defined in the model structure using six performance criteria. In doing so, we (i) provide a plausible
comparison between the two approaches (local and global) commonly used in the SA studies, (ii) contribute to understanding
the impact of selected performance criteria in the sensitivity and identifiability analysis, and (iii) assess the role of the sensi-

tivity and identifiability analysis on the uncertainty quantification, parameter optimization, and model performance. This
paper is structured as follows: Section 2 describes the Materials and Methods; Section 3 presents the Results and Discussions,
and Section 4 provides that a summary from conclusions is drawn.

2. MATERIALS AND METHODS

2.1. Study area and data

2.1.1. The study area

The study is performed in the HBRB, the second-largest river in Cameroon, which is situated in northern Cameroon among

latitudes 7°N and 11°N, and longitudes 12°E and 16°E, with a drainage area of 64,000 km2 at the stream gauging station
(Figure 1). It rises at an altitude of 1,300 m at the Adamawa Plateau and is the primary tributary of the Niger River Basin.
The HBRB is the only perennial river in northern Cameroon, whereas many rivers are seasonal and dry up a few months
after the end of the wet season. Its resources are used in many contexts including hydropower, irrigation, navigation, industry,

domestic use, and breeding. Given its capability to sustain socio-economic activities, numerous development projects had
been set up, which include business farms for irrigated sugar cane, rice, cotton, and greens, along the traditional farms of
maize, sorghum, and millet. Furthermore, in 2007, the world bank accepted the second phase of the undertaking, known

as the ‘Niger Basin Water resources improvement and Sustainable Ecosystems management project’. The undertaking intends
to increase the hydroelectric and irrigation capacity of the Lagdo Dam to deliver electricity from the dam to neighboring
countries (IRAP 2015).
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The basin enjoys a Sudan-Sahelian climate (tropical humid climate), which is characterized by two distinct seasons: a dry
season from November to April and a wet season from May to October. This is a unimodal rainfall zone with annual rainfall

between 900 and 1,500 mm (Dassou et al. 2016), which gradually decreases from the south (Adamawa Plateau Highlands) to
the north of the basin (Chad Plains). In contrast to rainfall, the temperature inside the basin increases gradually from south to
north, with an average annual basin temperature of 28 °C. Vegetation of the area is dominated by savanna (59%), wooded

savanna (38%), and highland meadow (3%). The Benue River watershed is defined by different classes of soil type: silty
clay loam, silty clay, silty loam, silt, and sandy. The elevation varies from 220 to 2,260 m and is characterized by the
Adamawa Plateau, and Alantika and Mandara mountains (Dassou et al. 2016).

2.1.2. Hydrometeorological data

Daily rainfall and potential evapotranspiration (PET) data were used as inputs to the hydrological model, while measured
daily streamflow time-series were utilized for model calibration and validation. Daily rainfall registered at 25 weather meteor-
ological stations (corresponding to 1 station/2,500 km2) in the catchment and neighboring areas and daily PET computed
with the Penman formula were provided by the Direction of the National Meteorology of Cameroon (DNM). Figure 1

shows the geographical location of the meteorological stations, whereas Table 1 provides the station names, coordinates,
altitudes, recording period, and data quality assessment.

Daily measured streamflow data for three gauging stations (Garoua, Riao, and Buffle Noir) that are located in the basin

were obtained from the environmental information system for the water resource (SIEREM) database (Boyer et al. 2008;
http://hydrosciences.fr/sierem). These three gauging stations are considered here as sub-catchments, and Table 2 shows
the physiographic and hydrological characteristics of these gauging stations.

Figure 1 | Basin localization, drainage area, and rainfall as well as hydrometric stations.
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Table 1 | Temporal and spatial characteristics of the 25 rainfall stations used

Station no. Station name Latitude (°N) Longitude (°E) Altitude (m) Record period Missing (%)

1 Mada 10.9 14.13 750 1950–2004 0.15

2 Guetale 10.89 13.90 490 1948–2003 0.39

3 Bogo 10.74 14.6 340 1953–2003 0.20

4 Mokolo 10.73 13.78 795 1950–2003 0.04

5 Maroua AGRO 10.63 14.30 402 1946–1990 3.50

6 Maroua station 10.58 14.27 428 1927–2003 0.00

7 Maroua Salak 10.46 14.26 423 1950–2004 0.33

8 Hina-Marbak 10.37 13.85 544 1950–2003 0.10

9 Yagoua AGRI 10.35 15.28 325 1948–2003 0.01

10 Bourrah 10.25 13.51 775 1954–2003 0.64

11 Lara 10.18 14.51 416 1950–2003 0.01

12 Guidiguis 10.14 14.71 362 1961–2003 0.10

13 Doukoula 10.12 14.02 340 1955–2001 0.40

14 Kaele 10.10 14.44 388 1944–2003 0.02

15 Lam 10.07 14.14 430 1953–2003 0.85

16 Guider 9.93 13.95 356 1948–2003 0.00

17 Pitoa 9.41 13.51 274 1961–2003 0.01

18 Garoua AERO 9.34 13.38 242 1950–2004 0.59

19 Garoua ville 9.30 13.39 213 1950–2003 0.41

20 Fignole 8.57 13.05 523 1961–2003 0.00

21 Poli 8.48 13.23 436 1950–1995 0.03

22 Madingrin 8.45 15.00 430 1961–2003 0.00

23 Tcholire 8.40 14.17 392 1950–2003 0.02

24 Touboro 7.77 15.37 500 1950–2003 0.00

25 Ngaoundere 7.32 13.58 1,138 1950–2001 0.15

Table 2 | Physiographic and hydrological characteristics of the available streamflow gauging sites in the HBRB

Characteristics Garoua Riao Buffle Noir

Latitude (°N) 9.3 9.05 8.12

Longitude (°E) 13.38 13.68 13.83

Mean elevation (m a.s.l) 174 185 350

Catchment size (km2) 64,000 30,650 3,220

Mean annual precipitation (mm/year) 1,130 1,285 1,500

Mean annual discharge (m3/s) 451.58 260.89 37.33

Extreme discharge (m3/s) 5,820 3,320 738

Daily streamflow data available

Record period 1930� 1995 1950� 1999 1955� 1995

Number of months 776 591 480

Missing months (%) 26.80 08.97 14.79
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2.2. Methods

2.2.1. Hydrological model

The HYdrological MODel (HYMOD; Wagener et al. 2001) was used in this study. It is a conceptual-lumped rainfall-runoff

model that operates at the daily time-step and simulates discharge using rainfall and PET as inputs. This model was selected
based on its simple model structure and fewer model parameters (five parameters, see Table 3) compared to the existing
models (Yin et al. 2018). The model has also proven to be useful for streamflow simulation, flood forecasting, and future

water scenario management around the world (Gharari et al. 2013; Quan et al. 2015; Wi et al. 2015; Kim et al. 2021;
Nonki et al. 2021a). The model is composed of two main routines, including soil moisture and evapotranspiration routine,
represented by a nonlinear soil moisture reservoir and a response routine represented by three fast-flowing reservoirs and

one slow-flowing reservoir. The HYMOD is based on the probability-distribution theory proposed by Moore (1985), which
assumes that the soil moisture reservoirs within a catchment have variable depths. The distribution function of the reservoir
depths is represented by a Pareto distribution given by the following equation:

F(SM) ¼ 1� 1� SM
SM, max

� �B exp

(1)

where SM is the water storage capacity; SM,max and Bexp are two parameters describing the basin maximum water storage
capacity (mm) and the degree of spatial variability within the basin, respectively.

The excess rainfall that directly contributes to the runoff is partitioned into fast- and slow-flow components based on the

model distribution parameter (Alpha). A schematic representation of the different hydrological processes in the HYMOD is
shown in Figure 2.

Table 3 | Description of the different parameters in the HYMOD, unit, and initial ranges (Gharari et al. 2013)

Main hydrological processes Parameter name Definition Unit Initial range

Soil moisture and evaporation routine SM,max Maximum soil storage capacity of a catchment mm 1–500
Bexp Degree of the spatial variability of soil moisture capacity – 0.1–2

Response routine Alpha Partitioning factor between fast and slow routing reservoirs – 0.1–0.99
RF Residence time of quick-flow reservoirs day�1 0.1–0.99
RS Residence time of slow-flow reservoirs day�1 0.001–0.1

Figure 2 | HYMOD structure (adopted from Gharari et al. (2013)).
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2.2.2. Sensitivity and parameter identifiability analyses

Two SA approaches were used in this research: the local SA (LSA) approach, which helped to identify the parameters that
individually most influence the model outputs, and the global SA (GSA) approach, which considers the interactions between

the model parameters and helps to refine the behavioral/non-behavioral ranges for a parameter and perform the identifiability
analysis.

For the individual SA, a widely applied and recommended one-factor-at-time (OAT) method is used (Abebe et al. 2010;
Pianosi et al. 2016). The optimum model parameter set was first obtained during the initial model calibration using multiple

objective functions. For each model parameter that varies for its initial range (see Table 2), 2,000 values were generated using
the uniform distribution function, and the model was therefore run while keeping other parameters at their optimized values.
For each simulation, six performance criteria, namely Nash and Sutcliffe efficiency (NSE; Nash & Sutcliffe 1970), percent

bias (PBIAS; Zhang et al. 2011), Pearson correlation coefficient (r; Moriasi et al. 2007), standardized root mean square
error (RSR; Moriasi et al. 2007), Kling–Gupta efficiency (KGE; Gupta et al. 2009), and composite function of KGE and
inverse of KGE (OF; Lemaitre-Basset et al. 2021) were computed. These criteria were selected based on the connection

between them and part of the hydrograph, as well as the hydrological components that they consider (see Table 3 for the
names, formulations, and the threshold value of these criteria for behavioral simulations). The parameter is identified as influ-
encing or not influencing the model outputs if changes in its value influence the performance criteria or not.

For the GSA and parameter identifiability analysis, we implemented the Monte Carlo approach. It is a GSA method widely

used in SA studies (Sobol’ 2001; Saltelli 2002; Abebe et al. 2010) and implemented in many algorithms of SA (Beven & Freer
2001; Sobol’ & Myshetskaya 2008; Azzini et al. 2021). This method has the advantage of implicitly accounting for the inter-
actions between model parameters. It is based on running many simulations of the model using a large random sample of

input variables. Considering the initial ranges of different parameters, we generated 50,000 model parameter sets. The
model was run for each model parameter set with the model parameters sampled simultaneously. The simulations, as well
as model parameters, were split into behavioral and non-behavioral simulations/parameters based on the threshold value

of each performance criterion mentioned above. The parameter is then said to be more precisely identified in the model struc-
ture, or more sensitive to the model output if the range of behavioral parameters is smaller than the initial range. This is
assessed by comparing the posterior distribution of the behavioral parameter with the prior distribution of the same par-

ameter, which is assumed here to be uniform (Quan et al. 2015). If the two distributions (prior and posterior) deviate
significantly, the parameter is considered a sensitive parameter (Sun et al. 2012; Quan et al. 2015).

2.2.3. Model optimization, performance assessment, and uncertainty prediction

At this stage, the Monte Carlo optimization algorithm and the split-sample test (Klemeš 1986) were applied. The data time-
series were divided into two sub-periods (calibration and validation) and the first year of each sub-period was considered as a
warm-up period. The lower and upper bounds of each parameter obtained from the behavioral simulations were used to

evaluate the descriptive capabilities of the model in the calibration phase using the multi-objective functions mentioned
above, keeping constant the values of the parameters identified as not influencing the model output and poorly defined
within the model structure. This can help to reduce the parameter range and space and thus equifinality (Cibin et al.
2014). The optimum model parameter sets obtained from 50,000 model runs were then used to check the predictive

capacities of the model in the validation period. The performance of the model was then evaluated using graphical analysis
(visual hydrograph comparison as well as flow duration curves) and statistical criteria listed in Table 4. The behavioral par-
ameter sets obtained by constraining the model parameters into a small range with respect to the KGE were used to simulate

the discharge during the validation period and the uncertainty in the model prediction was assessed by plotting the uncer-
tainty band. The P-factor and the R-factor were also used to quantify the proportion of the measured discharge that falls
inside the uncertainty band and to represent the average width of the given uncertainty limits divided by the standard

deviation of the observations, respectively. Ideally, most of the measured discharge should fall within the uncertainty band
(P-factor →1) while having the narrowest band (R-factor→ 0) (Abbaspour et al. 2009).

3. RESULTS AND DISCUSSION

3.1. Individual sensitivity analysis

Figure 3 shows the individual sensitivity analysis of each parameter with regard to different performance criteria in the con-
sidered three sub-catchments. The results reveal that the parameters influencing the model output vary depending on the

Hydrology Research Vol 54 No 9, 1042



Table 4 | Mathematical formulation and optimal as well as threshold values of each objective measure for acceptable simulations

Objective criteria Formulation Optimal value Threshold for behavioral simulations

NSE (Q)

1�

Pn
i¼1

(Qobs,i �Qsim,i)
2

Pn
i¼1

(Qobs,i �Qobs)
2

1 � 0:65

RSR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

(Qobs,i �Qsim,i)
2

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

(Qobs,i �Qobs)
2

s
0 � 0:5

PBIAS Pn
i¼1

(Qobs,i �Qsim,i)

Pn
i¼1

Qobs,i

� 100

0 � +15

r Pn
i¼1

[(Qobs,i �Qobs)(Qsim,i �Qsim,i)]ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

(Qobs,i �Qobs)
2 � Pn

i¼1
(Qsim,i �Qsim)

2

s
1 � 0:8

KGE (Q)
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(r � 1)2 þ (a� 1)2 þ (b� 1)2

q
1 � 0:75

OF KGE(Q)þKGE(1=Q)
2

1 � 0:5

Qobs,i and Qsim,i represent, respectively, the measured and modeled streamflow in the time step i; Qobs and Qsim represent their mean values, and n is the total number of time steps

of simulation. α is the ratio between the standard deviations of modeled and measured streamflow, while β is the ratio between their mean values.

Figure 3 | Individual parameter sensitivity box plots with respect to KGE (a), NSE (b), RSR (c), absolute PBIAS (d), r (e), and OF (f) objective
measures in the three gauging stations.
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selected criterion and the sub-catchments. The soil moisture and evaporation routine parameters (SM,max and Bexp) are the

most sensitive with respect to all selected criteria and catchments. This result is not surprising because these are the par-
ameters that control all the processes that govern the water balance in the catchment scale, i.e., precipitation, infiltration,
evapotranspiration, and runoff, and therefore should affect the entire part of the hydrograph. This result is similar to those

of Nonki et al. (2021c) and Abebe et al. (2010) who found that the soil and evaporation routine parameters in the HBV
model are sensitive to all the hydrological components. The results also show that the parameters related to base-flow
(Alpha and RS) are little or insensitive with regard to all the selected performance criteria, except the composite criterion
(OF). This result was somewhat expected given that Garcia et al. (2017) found OF to be the best choice for low-flow

simulations.
We also notice that the residence time of the quick-flow reservoir parameter (RF) is sensitive with regard to RSR and r cri-

teria since this parameter controls both the timing and shape of the hydrograph and therefore has little effect on high-flow

series (NSE) and no influence on the volume error (PBIAS). This result underscores the importance of using several objective
functions for the SA, as the group of sensitive parameters is related to the selected objective function. This finding is consist-
ent with other research (Abebe et al. 2010; Zelelew & Alfredsen 2012; Guse et al. 2020). The results also reveal that the

parameter sensitivity increases with the increasing catchment size.

3.2. Global sensitivity and identifiability analysis

Figure 4 shows the posterior distributions of behavioral values of each parameter when all the parameters were sampled sim-
ultaneously with respect to the different objective measures in different sub-catchments (Garoua, Riao, and Buffle Noir) and

the assumed prior uniform distribution. In general, the sensitive parameters and the well-defined or badly defined parameters
in the model structure vary according to the objective functions and sub-catchments. This result is not surprising because each
criterion has a different focus and therefore captures different hydrological processes and conditions (Wagener et al. 2003;

Figure 4 | Posterior distributions of likelihood for the behavioral parameter sets with respect to the different objective measures such as KGE
(first line of the panel), NSE (second line), RSR (third line), absolute PBIAS (fourth line), r (fifth line), and OF (sixth line of the panel) in different
sub-catchments (Garoua (red), Riao (blue), and Buffle Noir (magenta)) and the prior uniform distribution (dotted lines). Please refer to the
online version of this paper to see this figure in colour: https://dx.doi.org/10.2166/nh.2023.243.
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Fenicia et al. 2008; Reusser et al. 2009; Pfannerstill et al. 2014). In addition, the results show that, for all the objective

measures used except the r criterion, posterior distributions of SM,max and Bexp are quite different from prior distribution,
with the ranges smaller than the initial ranges, indicating that these parameters are the most sensitive and more precisely well-
identified in the model structure than the other three (Alpha, RS, and RF). This result is reinforced by the narrow band of

uncertainty of the behavioral parameters compared to their initial range (see Figure 5). This highlights the fact that the
soil moisture and evaporation processes are accurately simulated by the model.

For all three parameters (Alpha, RS, and RF), the parameter related to slow reservoirs (KS) has the highest sensitivity, fol-
lowed by the parameter associated with fast flow (KF), and then the parameter related to water partitioning between fast and

slow reservoirs (Alpha) as measured by KGE and OF criteria. The above shows that in the HYMOD, slow response processes
become more important than fast-flow generation processes (Parra et al. 2018). This is consistent with the results of the iden-
tifiability analysis in which, for the parameter Alpha, there is no improvement of parameter range by contrasting the majority

of performance criteria compared to RF and RS, which was precisely constrained by contrasting some performance criteria
(see Figure 5). The parameter sensitivity and identifiability increase with increasing catchment size as found with LSA. This
means that lumped-conceptual models are better suited to large catchments than to small ones. This can be explained by the

fact that the functional behavior of catchments differs considerably depending on the scale of the catchment, and that catch-
ment size is one of the five most important explanatory variables influencing runoff simulations (Poncelet et al. 2017).
Consequently, for large catchments with smooth hydrological behavior, it is easier for models to reproduce different hydro-

logical processes.
Comparing the results of local SA with those of global SA shows that both give similar results in terms of parameter impact

on the model output with regard to both objective functions and catchment size. However, we assess the GSA to have advan-
tages over LSA as GSA not only provides the influential or non-influential model parameters to the model output, it is also

used to constrain the model parameters in a small range that helps to reduce the equifinality and therefore quantify and
reduce the uncertainties in the model output.

Figure 5 | Box plots on parameter identifiability analysis with respect to different statistical metrics and sub-catchments. KGE (a), NSE
(b), RSR (c), absolute PBIAS (d), r (e), and OF (f).
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3.3. Implications of sensitivity and identifiability analysis on the model uncertainty quantification

For the behavioral simulations, the non-constraint of the model parameters to small ranges by contrasting the r criterion (refer
to Figures 4 and 5) results in a high uncertainty band (with the P-factor and R-factor equal to 0.67 and 1.35, respectively)

compared to the KGE criterion, for example, that shows a narrow band on uncertainty (P-factor and R-factor equal to
0.46 and �0.02, respectively) as the model parameters were precisely constrained by contrasting this criterion (see Figure 6).
This result is similar to Guse et al. (2020) who found that the higher the model parameters are constrained, the lower the
uncertainty band of the behavioral simulations is. It also clarifies the relationship and role of SA to uncertainty quantification

and improves the use of SA in support of decision-making. This can be considered as a significant contribution to the SA
future challenges and outlooks identified by Razavi et al. (2021).

3.4. Performance assessment and uncertainty prediction

Figures 7 and 8 show the comparison between measured and modeled hydrographs in the three gauging stations as well as the
cumulative frequency curves during the model recalibration and validation periods while the values of efficiency are given in
Table 5. The model reproduced the timing and magnitude of the measured discharge well in the different gauge stations and
also captures various parts of the hydrograph well. However, low flows are more correctly simulated than high flows, which

are comparatively underestimated in magnitude throughout the sub-catchments. The results also exhibit a strong relationship
between the modeled and measured discharge during the calibration and evaluation periods (with r greater than 0.80;
Figure 9), indicating good model performance. This result is supported by the NSE and the KGE greater than 0.65 obtained

Figure 6 | Uncertainty band of model predictions for behavioral parameter sets, best simulation and measured streamflow in the Garoua
sub-catchment with regard to different objective criteria. KGE (a) and r (b).
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Figure 7 | Comparison between measured and modeled hydrographs as well as flow duration curves in the three sub-catchments during the
model recalibration: Garoua (top), Riao (middle), and Buffle Noir (bottom).
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Figure 8 | Same as Figure 7 but during the validation.

Hydrology Research Vol 54 No 9, 1048



Table 5 | Statistical performance results during the calibration and validation periods

Outlet Period KGE NSE RSR PBIAS r

Garoua Calibration 1961–1970 0.89 0.88 0.35 5.1 0.94
Validation 1971–1980 0.67 0.82 0.42 30.2 0.94

Riao Calibration 1961–1970 0.85 0.84 0.4 –2.31 0.92
Validation 1971–1979 0.83 0.76 0.49 16.8 0.88

Buffle Noir Calibration 1961–1968 0.77 0.74 0.51 2.19 0.86
Validation 1971–1978 0.73 0.67 0.58 12.9 0.82

Mean model efficiencies Calibration – 0.84 0.82 0.42 3.2 0.91
Validation – 0.74 0.75 0.50 19.97 0.88

Figure 9 | Correlation between daily measured and modeled discharge during the calibration (first line of the panel) and the validation
(second line) periods at the three sub-catchments: (a) Garoua, (b) Riao, (c) Buffle Noir.
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during the model optimization and validation. Consistent with Moriasi et al. (2007), this model is classed as very good within

the Garoua and Riao sub-catchments and good within the Buffle Noir. This result is consolidated by the narrow band of
model uncertainty prediction for the behavioral parameter sets (Figure 10) with the R-factors of �0.01, �0.16 and �0.30
obtained at Garoua, Riao, and Buffle Noir, respectively. We also noticed that the best simulation with respect to the measured

streamflow lies inside this narrow uncertainty band with P-factors � 40%. This highlights that the modeled discharges agree

Figure 10 | Measured streamflow (black line), best-modeled streamflow (red line), and the uncertainty band for the acceptable simulations
during the validation period at the different gauging stations of the watershed. (a) Garoua, (b) Riao, and (c) Buffle Noir. Please refer to the
online version of this paper to see this figure in colour: https://dx.doi.org/10.2166/nh.2023.243.
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with the observations satisfactorily, indicating the good performance of the hydrological model and the feasibility of using the

HYMOD to estimate long time-series of river discharge in the study area.
For the three sub-catchments considered, the calibration efficiency is higher than the validation efficiency with a loss in the

model efficiency of 0.1, 0.07, 0.08, and 0.03 for the KGE, NSE, RSR, and r criteria, respectively (see the mean model efficien-

cies of the three sub-catchments in Table 5). This result is somewhat expected as the models are generally assumed to
represent calibration data better than validation data. In addition, the model is calibrated to better represent the hydrological
conditions of the catchment during the calibration period, which are never exactly the same during the model validation
period (Merz et al. 2009).

The statistical evaluation of the model performance also shows that the model performance increases with increasing
catchment size. This can be explained by the fact that the SA and the parameter identifiability analyses show that the precisely
identified model parameters increase with the catchment size and, consistent with Guse et al. (2020), the precisely identified

model parameters improve the model robustness and performance. This result is consistent with those of Merz et al. (2009)
and Nonki et al. (2021c), who found that the performance of the conceptual rainfall-runoff model increases with catchment
size. Catchment size is one of the five most important explanatory variables influencing runoff simulations (Poncelet et al.
2017). Therefore, it is expected that for large catchments with smooth hydrological behavior, it is easier for the models to
breed streamflow. In addition, consistent with Poncelet et al. (2017), model performance decreases with precipitation and
streamflow variability. For example, within the Buffle Noir outlet, the streamflow variability is more pronounced with a dis-

charge coefficient of 39% compared to Riao (22%) and Garoua (15%) sub-catchments (see Figure 10). This may be due to the
fact that this sub-catchment has a clear torrential character and each heavy rainfall will end in a definite peak flow.

The relative error-based statistical analysis (PBIAS) shows that the model underestimates the total discharge during the cali-
bration and validation periods at the different gauging stations (see Table 5). This underestimation is more pronounced during

the validation period than during the model calibration period because the model adjusts its parameters to the over- or under-
estimation of the input data during the calibration period (Nonki et al. 2021a). We also find that the model bias increases with
the size of the catchment. This may be a consequence of the density and distribution of the rainfall stations considered for the

calculation of mean areal rainfall (1/2,500 km2). Xu et al. (2013) found that increasing the number of rain gauges for the cal-
culation of mean areal rainfall gradually reduces the range of simulated hydrographs and absolute errors, with a higher
probability of over- or underestimation of peak flows when the number of rain gauges considered is smaller compared to

a threshold number. Similar results have also been reported by Merz et al. (2009) and Xiaojun et al. (2021).

4. SUMMARY AND CONCLUSIONS

Conceptual rainfall-runoff models are widely used in many hydrological applications to support water resource management
practices. They provide an advantage in data-poor regions due to their ability to use limited data and generate sufficiently
reliable information. The main challenge with this type of hydrological model remains the flexibility to determine an optimal

set of model parameters due to several sources of uncertainty. This study is being carried out in the HBRB in Cameroon and
has the aim of developing a rainfall-runoff model that is appropriate in the context of the hydro-climatic characteristics of the
basin. Local and global SA approaches were applied to identify which model parameters have the greatest impact on model

output and how well model parameters are defined within the model structure using six performance criteria to reduce and
predict model uncertainty and improve model performance. The results showed that the group of parameters sensitive to
different hydrological components depended on the selected objective function using both local and global SA approaches.

However, soil and evapotranspiration routine parameters (SM,max and Bexp) are sensitive to all the selected objective
measures. We also found that the more precisely the model parameters are constrained within a small range, the smaller
the model uncertainties and therefore the better the model performance. In addition, the best simulation versus measured
discharge is within the narrow band of model prediction uncertainties and shows that the simulated discharge is in good

agreement with the observations, indicating that the hydrological model performs well in this basin. The parameter sensitivity
and identifiability, as well as the model performance, increase with the catchment size.

In summary, we have demonstrated the role and relationship between SA and uncertainty quantification and high-

lighted the importance of SA and parameter identifiability in uncertainty prediction and parameter optimization.
Within this context, we conclude that the application of HYMOD to support various water management initiatives in
this catchment is possible.
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C., Holko, L., Hopkinson, C., Hrachowitz, M., Illangasekare, T. H., Inam, A., Innocente, C., Istanbulluoglu, E., Jarihani, B., Kalantari, Z.,
Kalvans, A., Khanal, S., Khatami, S., Kiesel, J., Kirkby, M., Knoben, W., Kochanek, K., Kohnová, S., Kolechkina, A., Krause, S., Kreamer,
D., Kreibich, H., Kunstmann, H., Lange, H., Liberato, M. L. R., Lindquist, E., Link, T., Liu, J., Loucks, D. P., Luce, C., Mahé, G.,
Makarieva, O., Malard, J., Mashtayeva, S., Maskey, S., Mas-Pla, J., Mavrova-Guirguinova, M., Mazzoleni, M., Mernild, S., Misstear, B. D.,
Montanari, A., Müller-Thomy, H., Nabizadeh, A., Nardi, F., Neale, C., Nesterova, N., Nurtaev, B., Odongo, V. O., Panda, S., Pande, S.,
Pang, Z., Papacharalampous, G., Perrin, C., Pfister, L., Pimentel, R., Polo, M. J., Post, D., Sierra, C. P., Ramos, M. H., Renner, M.,
Reynolds, J. E., Ridolfi, E., Rigon, R., Riva, M., Robertson, D. E., Rosso, R., Roy, T., Sá, J. H. M., Salvadori, G., Sandells, M., Schaefli, B.,
Schumann, A., Scolobig, A., Seibert, J., Servat, E., Shafiei, M., Sharma, A., Sidibe, M., Sidle, R. C., Skaugen, T., Smith, H., Spiessl, S. M.,
Stein, L., Steinsland, I., Strasser, U., Su, B., Szolgay, J., Tarboton, D., Tauro, F., Thirel, G., Tian, F., Tong, R., Tussupova, K., Tyralis, H.,
Uijlenhoet, R., van Beek, R., van der Ent, R. J., van der Ploeg, M., Van Loon, A. F., van Meerveld, I., van Nooijen, R., van Oel, P. R.,
Vidal, J. P., von Freyberg, J., Vorogushyn, S., Wachniew, P., Wade, A. J., Ward, P., Westerberg, I. K., White, C., Wood, E. F., Woods, R.,
Xu, Z., Yilmaz, K. K. & Zhang, Y. 2019 Twenty-three unsolved problems in hydrology (UPH) – a community perspective. Hydrol. Sci. J.
64 (10), 1141–1158. https://doi.org/10.1080/02626667.2019.1620507.

Boyer, J. F.,Dieulin,C.&Servat,E. 2008SIEREM:anenvironmental information system forwater resourcesmodelling inAfrica. In:Proceedings of
Water Down Under 2008, pp. 1677–1688. Available from: https://search.informit.org/doi/10.3316/informit.588497485242020.

Boyle, D. P., Gupta, H. V. & Sorooshian, S. 2000 Toward improved calibration of hydrologic models: combining the strengths of manual and
automatic methods. Water Resour. Res. 36 (12), 3663–3674. https://doi.org/10.1029/2000WR900207.

Budhathoki, B. R., Adhikari, T. R., Shrestha, S. & Awasthi, R. P. 2023 Application of hydrological model to simulate streamflow contribution
on water balance in Himalaya River basin, Nepal. Front. Earth Sci. 11, 1128959. https://doi.org/10.3389/feart.2023.1128959.

Cibin, R., Athira, P., Sudheer, K. P. & Chaubey, I. 2014 Application of distributed hydrological models for predictions in ungauged basins: a
method to quantify predictive uncertainty. Hydrol. Process. 28 (4), 2033–2045. https://doi.org/10.1002/hyp.9721.

Dassou, E., Ombolo, A., Chouto, S., Mboudou, G., Essi, J. & Bineli, E. 2016 Trends and geostatistical interpolation of spatio-temporal
variability of precipitation in northern Cameroon. Am. J. Clim. Change 5, 229–244. https://doi.org/10.4236/ajcc.2016.52020.

Devak, M. & Dhanya, C. T. 2017 Sensitivity analysis of hydrological models: review and way forward. J. Water Clim. Change 8 (4), 557–575.
https://doi.org/10.2166/wcc.2017.149.

Hydrology Research Vol 54 No 9, 1052

http://dx.doi.org/10.1029/2008WR007615
http://dx.doi.org/10.1016/j.jhydrol.2010.06.007
http://dx.doi.org/10.1016/j.jhydrol.2010.06.007
http://dx.doi.org/10.1016/j.envsoft.2021.105167
http://dx.doi.org/10.1016/S0022-1694(01)00421-8
http://dx.doi.org/10.1016/S0022-1694(01)00421-8
http://dx.doi.org/10.1080/02626667.2019.1620507
http://dx.doi.org/10.1029/2000WR900207
http://dx.doi.org/10.1029/2000WR900207
http://dx.doi.org/10.3389/feart.2023.1128959
http://dx.doi.org/10.3389/feart.2023.1128959
http://dx.doi.org/10.1002/hyp.9721
http://dx.doi.org/10.1002/hyp.9721
http://dx.doi.org/10.4236/ajcc.2016.52020
http://dx.doi.org/10.4236/ajcc.2016.52020
http://dx.doi.org/10.2166/wcc.2017.149


Fenicia, F., McDonnell, J. J. & Savenije, H. H. G. 2008 Learning from model improvement: on the contribution of complementary data to
process understanding. Water Resour. Res. 44, W06419. https://doi.org/10.1029/2007WR006386.

Garcia, F., Folton, N. & Oudin, L. 2017 Which objective function to calibrate rainfall–runoff models for low-flow index simulations? Hydrol.
Sci. J. 62 (7), 1149–1166. https://doi.org/10.1080/02626667.2017.1308511.

Gharari, S., Hrachowitz, M., Fenicia, F. & Savenije, H. H. G. 2013 An approach to identify time consistent model parameters: sub-period
calibration. Hydrol. Earth Syst. Sci. 17, 149–161. https://doi.org/10.5194/hess-17-149-2013.

Gupta, H. V., Kling, H., Yilmaz, K. K. & Martinez, G. F. 2009 Decomposition of the mean squared error and NSE performance criteria:
implications for improving hydrological modelling. J. Hydrol. 377 (1), 80–91. https://doi.org/10.1016/j.jhydrol.2009.08.003.

Guse, B., Kiesel, J., Pfannerstill, M. & Fohrer, N. 2020 Assessing parameter identifiability for multiple performance criteria to constrain model
parameters. Hydrol. Sci. J. 65 (7), 1158–1172. https://doi.org/10.1080/02626667.2020.1734204.

Ich, I., Sok, T., Kaing, V., Try, S., Chan, R. & Oeurng, C. 2022 Climate change impact on water balance and hydrological extremes in the
Lower Mekong Basin: a case study of Prek Thnot River Basin, Cambodia. J. Water Clim. Change 13 (8), 2911–2939. https://doi.org/10.
2166/wcc.2022.051.

IRAP 2015 Hydropower in Africa: African Dams Briefing. International Rivers, Oakland, CA.
Kim, K. B., Kwon, H. H. & Han, D. 2021 Bias-correction schemes for calibrated flow in a conceptual hydrological model. Hydrol. Res. 52 (1),

196–211. https://doi.org/10.2166/nh.2021.043.
Klemeš, V. 1986 Operational testing of hydrologic simulation models.Hydrol. Sci. J. 31, 13–24. https://doi.org/10.1080/02626668609491024.
Lemaitre-Basset, T., Collet, L., Thirel, G., Parajka, J., Evin, G. &Hingray, B. 2021 Climate change impact and uncertainty analysis on hydrological

extremes in a French Mediterranean catchment. Hydrol. Sci. J. 66 (5), 888–903. https://doi.org/10.1080/02626667.2021.1895437.
Li, M., Di, Z. & Duan, Q. 2021 Effect of sensitivity analysis on parameter optimization: case study based on streamflow simulations using the

SWAT model in China. J. Hydrol. 603, 126896. https://doi.org/10.1016/j.jhydrol.2021.126896.
Liang, Y., Cai, Y., Sun, L., Wang, X., Li, C. & Liu, Q. 2021 Sensitivity and uncertainty analysis for streamflow prediction based on multiple

optimization algorithms in Yalong River Basin of southwestern China. J. Hydrol. 601, 126598. https://doi.org/10.1016/j.jhydrol.2021.126598.
Merz, R., Parajka, J. & Blöschl, G. 2009 Scale effects in conceptual hydrological modeling. Water Resour. Res. 45, W09405. https://doi.org/

10.1029/2009WR007872.
Montanari, A., Young, G., Savenije, H., Hughes, D., Wagener, T., Ren, L., Koutsoyiannis, D., Cudennec, C., Toth, E., Grimaldi, S., Bloschl, G.,

Sivapalan, M., Beven, K., Gupta, H., Hipsey, M., Schaefli, B., Arheimer, B., Boegh, E., Schymanski, S., Baldassarre, G. D., Yu, B., Hubert,
P., Huang, Y., Schumann, A., Post, D., Srinivasan, V., Harman, C., Thompson, S., Rogger, M., Viglione, A., McMillan, H., Characklis, G.,
Pang, Z. & Belyaev, V. 2013 ‘Panta Rhei – everything flows’: change in hydrology and society – the IAHS scientific decade 2013–2022.
Hydrol. Sci. J. 58 (6), 1256–1275. https://doi.org/10.1080/02626667.2013.809088.

Moore, R. J. 1985 The probability-distributed principle and runoff production at point and basin scales.Hydrol. Sci. J. 30 (2), 273–297. https://
doi.org/10.1080/02626668509490989.

Moore, R. J. & Cole, S. J. 2022 IMPRESS: Approaches to IMProve Flood and Drought Forecasting and Warning in Catchments Influenced by
REServoirS. CRW2020_06. Centre of Expertise for Waters. Available from: crew.ac.uk/publications.

Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D. & Veith, T. L. 2007 Model evaluation guidelines for systematic
quantification of accuracy in watershed simulations. Trans ASABE 50 (3), 885–900. https://doi.org/10.13031/2013.23153.

Nash, J. E. & Sutcliffe, J. V. 1970 River flow forecasting through conceptual models. part I – a discussion of principles. J. Hydrol. 10, 282–290.
https://doi.org/10.1016/0022-1694(70)90255-6.

Nonki, R. M., Lenouo, A., Lennard, C. J. & Tchawoua, C. 2019 Assessing climate change impacts on water resources in the Benue River
Basin, Northern Cameroon. Environ. Earth Sci. 78 (20), 606. https://doi.org/10.1007/s12665-019-8614-4.

Nonki, R. M., Lenouo, A., Lennard, C. J., Tshimanga, R. M. & Tchawoua, C. 2021a Comparison between dynamic and static sensitivity
analysis approaches for impact assessment of different potential evapotranspiration methods on hydrological models’ performance.
J. Hydrometeor. 22 (10), 2713–2730. https://doi.org/10.1175/JHM-D-20-0192.1.

Nonki, R. M., Lenouo, A., Tchawoua, C., Lennard, C. J. & Amoussou, E. 2021b Impact of climate change on hydropower potential of the
Lagdo dam, Benue River Basin, Northern Cameroon. Proc. IAHS 384, 337–342. https://doi.org/10.5194/piahs-384-337-2021.

Nonki, R. M., Lenouo, A., Tshimanga, R. M., Donfack, F. C. & Tchawoua, C. 2021c Performance assessment and uncertainty prediction of a
daily time-step HBV-Light rainfall-runoff model for the Upper Benue River Basin, Northern Cameroon. J. Hydrol. Reg. Stud. 36, 100849.
https://doi.org/10.1016/j.ejrh.2021.100849.

Obahoundje, S., Youan Ta, M., Diedhiou, A., Amoussou, E. & Kouadio, K. 2021 Sensitivity of hydropower generation to changes in climate
and land use in the Mono Basin (West Africa) using CORDEX dataset and WEAP model. Environ. Process. 8, 1073–1097. https://doi.
org/10.1007/s40710-021-00516-0.

Parra,V., Fuentes-Aguilera,P.&Muñoz,E. 2018 Identifying advantages anddrawbacksof twohydrologicalmodels basedona sensitivityanalysis:
a study in two Chilean watersheds.Hydrol. Sci. J. 63 (12), 1831–1843. https://doi.org/10.1080/02626667.2018.1538593.

Pfannerstill, M., Guse, B. & Fohrer, N. 2014 Smart low flow signature metrics for an improved overall performance evaluation of hydrological
models. J. Hydrol. 510, 447–458. https://doi.org/10.1016/j.jhydrol.2013.12.044.

Pianosi, F., Beven, K., Freer, J., Hall, J. W., Rougier, J., Stephenson, D. B. & Wagener, T. 2016 Sensitivity analysis of environmental models: a
systematic review with practical workflow. Environ. Model. Softw. 79, 214–232. https://doi.org/10.1016/j.envsoft.2016.02.008.

Poncelet, C.,Merz, R.,Merz, B., Parajka, J., Oudin, L., Andreassian, V.& Perrin, C. 2017 Process-based interpretation of conceptual hydrological
model performance using a multinational catchment set.Water Resour. Res. 53, 7247–7268. https://doi.org/10.1002/2016WR019991.

Hydrology Research Vol 54 No 9, 1053

http://dx.doi.org/10.1029/2007WR006386
http://dx.doi.org/10.1029/2007WR006386
http://dx.doi.org/10.1080/02626667.2017.1308511
http://dx.doi.org/10.5194/hess-17-149-2013
http://dx.doi.org/10.5194/hess-17-149-2013
http://dx.doi.org/10.1016/j.jhydrol.2009.08.003
http://dx.doi.org/10.1016/j.jhydrol.2009.08.003
http://dx.doi.org/10.1080/02626667.2020.1734204
http://dx.doi.org/10.1080/02626667.2020.1734204
http://dx.doi.org/10.2166/wcc.2022.051
http://dx.doi.org/10.2166/wcc.2022.051
http://dx.doi.org/10.2166/nh.2021.043
http://dx.doi.org/10.1080/02626668609491024
http://dx.doi.org/10.1080/02626667.2021.1895437
http://dx.doi.org/10.1080/02626667.2021.1895437
http://dx.doi.org/10.1016/j.jhydrol.2021.126896
http://dx.doi.org/10.1016/j.jhydrol.2021.126896
http://dx.doi.org/10.1016/j.jhydrol.2021.126598
http://dx.doi.org/10.1016/j.jhydrol.2021.126598
http://dx.doi.org/10.1029/2009WR007872
http://dx.doi.org/10.1080/02626667.2013.809088
http://dx.doi.org/10.1080/02626668509490989
crew.ac.uk/publications
http://dx.doi.org/10.13031/2013.23153
http://dx.doi.org/10.13031/2013.23153
http://dx.doi.org/10.1016/0022-1694(70)90255-6
http://dx.doi.org/10.1007/s12665-019-8614-4
http://dx.doi.org/10.1007/s12665-019-8614-4
http://dx.doi.org/10.1175/JHM-D-20-0192.1
http://dx.doi.org/10.1175/JHM-D-20-0192.1
http://dx.doi.org/10.5194/piahs-384-337-2021
http://dx.doi.org/10.5194/piahs-384-337-2021
http://dx.doi.org/10.1016/j.ejrh.2021.100849
http://dx.doi.org/10.1016/j.ejrh.2021.100849
http://dx.doi.org/10.1007/s40710-021-00516-0
http://dx.doi.org/10.1007/s40710-021-00516-0
http://dx.doi.org/10.1080/02626667.2018.1538593
http://dx.doi.org/10.1080/02626667.2018.1538593
http://dx.doi.org/10.1016/j.jhydrol.2013.12.044
http://dx.doi.org/10.1016/j.jhydrol.2013.12.044
http://dx.doi.org/10.1016/j.envsoft.2016.02.008
http://dx.doi.org/10.1016/j.envsoft.2016.02.008
http://dx.doi.org/10.1002/2016WR019991
http://dx.doi.org/10.1002/2016WR019991


Quan, Z., Teng, J., Sun, W., Cheng, T. & Zhang, J. 2015 Evaluation of the HYMOD model for rainfall–runoff simulation using the GLUE
method. Proc. IAHS 368, 180–185. https://doi.org/10.5194/piahs-368-180-2015.

Rahvareh,M.,Motamedvaziri, B.,Moghaddamnia,A.&Moridi, A. 2023Modeling runoffmanagement strategies under climate change scenarios
using hydrological simulation in theZarrinehRiverBasin, Iran. J.Water Clim.Change, jwc2023511. https://doi.org/10.2166/wcc.2023.511.

Razavi, S., Jakeman, A., Saltelli, A., Prieur, C., Iooss, B., Borgonovo, E., Plischke, E., Piano, S. L., Iwanaga, T., Becker, W., Tarantola, S.,
Guillaume, J. H. A., Jakeman, J., Gupta, H., Melillo, N., Rabitti, G., Chabridon, V., Duan, Q., Sun, X., Smith, S., Sheikholeslami, R.,
Hosseini, N., Asadzadeh, M., Puy, A., Kucherenko, S. & Maier, H. R. 2021 The future of sensitivity analysis: an essential discipline for
systems modeling and policy support. Environ. Model. Softw. 137, 104954. https://doi.org/10.1016/j.envsoft.2020.104954.

Refsgaard, J. C., van der Sluijs, J. P., Brown, J. & van der Keur, P. 2006 A framework for dealing with uncertainty due to model structure error.
Adv. Water Res. 29 (11), 1586–1597. https://doi.org/10.1016/j.advwatres.2005.11.013.

Refsgaard, J. C., van der Sluijs, J. P., Højberg, A. L. & Vanrolleghem, P. A. 2007 Uncertainty in the environmental modelling process – a
framework and guidance. Environ. Model. Softw. 22 (11), 1543–1556. https://doi.org/10.1016/j.envsoft.2007.02.004.

Reusser, D. E., Blume, T., Schaefli, B. & Zehe, E. 2009 Analysing the temporal dynamics of model performance for hydrological models.
Hydrol. Earth Syst. Sci. 13, 999–1018. https://doi.org/10.5194/hess-13-999-2009.

Saltelli, A. 2002 Making best use of model evaluations to compute sensitivity indices. Comput. Phys. Commun. 145 (2), 280–297. https://doi.
org/10.1016/S0010-4655(02)00280-1.

Saltelli, A., Ratto, M., Tarantola, S. & Campolongo, F. 2006 Sensitivity analysis practices: strategies for model-based inference. Reliab. Eng.
Syst. Saf. 91 (10), 1109–1125. https://doi.org/10.1016/j.ress.2005.11.014.

Saltelli, A., Jakeman, A., Razavi, S. & Wu, Q. 2021 Sensitivity analysis: a discipline coming of age. Environ. Model. Softw. 146, 105226.
https://doi.org/10.1016/j.envsoft.2021.105226.

Shin, M. J., Guillaume, J. H., Croke, B. F. & Jakeman, A. J. 2015 A review of foundational methods for checking the structural identifiability of
models: results for rainfall-runoff. J. Hydrol. 520, 1–16. https://doi.org/10.1016/j.jhydrol.2014.11.040.

Singh, A. & Jha, S. K. 2021 Identification of sensitive parameters in daily and monthly hydrological simulations in small to large catchments
in Central India. J. Hydrol. 601, 126632. https://doi.org/10.1016/j.jhydrol.2021.126632.

Sobol’, I. 2001 Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates.Math. Comput. Simul. 55 (1–3),
271–280. https://doi.org/10.1016/S0378-4754(00)00270-6.

Sobol’, I. &Myshetskaya, E. 2008 Monte Carlo estimators for small sensitivity indices.Monte Carlo Methods Appl. 13 (5–6), 455–465. https://
doi.org/10.1515/mcma.2007.023.

Song, X., Zhang, J., Zhan, C., Xuan, Y., Ye, M. & Xu, C. 2015 Global sensitivity analysis in hydrological modeling: review of concepts,
methods, theoretical framework, and applications. J. Hydrol. 523, 739–757. https://doi.org/10.1016/j.jhydrol.2015.02.013.

Sun, W., Ishidaira, H. & Bastola, S. 2012 Calibration of hydrological models in ungauged basins based on satellite radar altimetry
observations of river water level. Hydrol. Process. 26 (23), 3524–3537. https://doi.org/10.1002/hyp.8429.

Tegegne, G., Park, D. K. & Kim, Y. O. 2017 Comparison of hydrological models for the assessment of water resources in a data-scarce region,
the Upper Blue Nile River basin. J. Hydrol: Reg. Stud. 14, 49–66. https://doi.org/10.1016/j.ejrh.2017.10.002.

Tibangayuka, N., Mulungu, D. M. & Izdori, F. 2022 Performance evaluation, sensitivity, and uncertainty analysis of HBV model in Wami
Ruvu basin, Tanzania. J. Hydrol.: Reg. Stud. 44, 101266. https://doi.org/10.1016/j.ejrh.2022.101266.

Velásquez, N., Vélez, J. I., Álvarez-Villa, O. D. & Salamanca, S. P. 2023 Comprehensive analysis of hydrological processes in a programmable
environment: the watershed modeling framework. Hydrology 10, 76. https://doi.org/10.3390/hydrology10040076.

Wagener, T., Boyle, D. P., Lees, M. J., Wheater, H. S., Gupta, H. V. & Sorooshian, S. 2001 A framework for development and application of
hydrological models. Hydrol. Earth Syst. Sci. 5, 13–26. https://doi.org/10.5194/hess-5-13-2001.

Wagener, T., McIntyre, N., Lees, M. J., Wheater, H. S. & Gupta, H. V. 2003 Towards reduced uncertainty in conceptual rainfall-runoff
modelling: dynamic identifiability analysis. Hydrol. Process. 17, 455–476. https://doi.org/10.1002/hyp.1135.

Wi, S., Yang, Y. C. E., Steinschneider, S., Khalil, A. & Brown, C. M. 2015 Calibration approaches for distributed hydrologic models in poorly
gauged basins: implication for streamflow projections under climate change. Hydrol. Earth Syst. Sci. 19, 857–876. https://doi.org/10.
5194/hess-19-857-2015.

Xiaojun, G., Peng, C., Xingchang, C., Yong, L., Ju, Z. & Yuqing, S. 2021 Spatial uncertainty of rainfall and its impact on hydrological hazard
forecasting in a small semi-arid mountainous watershed. J. Hydrol. 595, 126049. https://doi.org/10.1016/j.jhydrol.2021.126049.

Xu, H., Xu, C.-H., Chen, H., Zhang, Z. & Li, L. 2013 Assessing the influence of rain gauge density and distribution on hydrological model
performance in a humid region of China. J. Hydrol. 505, 1–12. https://doi.org/10.1016/j.jhydrol.2013.09.004.

Yin, Z., Liao, W., Lei, X., Wang, H. & Wang, R. 2018 Comparing the hydrological responses of conceptual and process-based models with
varying rain gauge density and distribution. Sustainability 10 (9), 3209. https://doi.org/10.3390/su10093209.

Zelelew, M. B. & Alfredsen, K. 2012 Sensitivity-guided evaluation of the HBV hydrological model parameterization. J. Hydroinform. 15 (3),
967–990. https://doi.org/10.2166/hydro.2012.011.

Zhang, H., Huang, G. H., Wang, D. & Zhang, X. 2011 Multi-period calibration of a semi-distributed hydrological model based on
hydroclimatic clustering. Adv. Water Resour. 34 (10), 1292–1303. https://doi.org/10.1016/j.advwatres.2011.06.005.

First received 23 March 2023; accepted in revised form 30 July 2023. Available online 16 August 2023

Hydrology Research Vol 54 No 9, 1054

http://dx.doi.org/10.5194/piahs-368-180-2015
http://dx.doi.org/10.5194/piahs-368-180-2015
http://dx.doi.org/10.2166/wcc.2023.511
http://dx.doi.org/10.2166/wcc.2023.511
http://dx.doi.org/10.1016/j.envsoft.2020.104954
http://dx.doi.org/10.1016/j.envsoft.2020.104954
http://dx.doi.org/10.1016/j.advwatres.2005.11.013
http://dx.doi.org/10.1016/j.envsoft.2007.02.004
http://dx.doi.org/10.1016/j.envsoft.2007.02.004
http://dx.doi.org/10.5194/hess-13-999-2009
http://dx.doi.org/10.1016/S0010-4655(02)00280-1
http://dx.doi.org/10.1016/j.ress.2005.11.014
http://dx.doi.org/10.1016/j.envsoft.2021.105226
http://dx.doi.org/10.1016/j.jhydrol.2014.11.040
http://dx.doi.org/10.1016/j.jhydrol.2014.11.040
http://dx.doi.org/10.1016/j.jhydrol.2021.126632
http://dx.doi.org/10.1016/j.jhydrol.2021.126632
http://dx.doi.org/10.1016/S0378-4754(00)00270-6
http://dx.doi.org/10.1515/mcma.2007.023
http://dx.doi.org/10.1016/j.jhydrol.2015.02.013
http://dx.doi.org/10.1016/j.jhydrol.2015.02.013
http://dx.doi.org/10.1002/hyp.8429
http://dx.doi.org/10.1002/hyp.8429
http://dx.doi.org/10.1016/j.ejrh.2017.10.002
http://dx.doi.org/10.1016/j.ejrh.2017.10.002
http://dx.doi.org/10.1016/j.ejrh.2022.101266
http://dx.doi.org/10.1016/j.ejrh.2022.101266
http://dx.doi.org/10.3390/hydrology10040076
http://dx.doi.org/10.3390/hydrology10040076
http://dx.doi.org/10.5194/hess-5-13-2001
http://dx.doi.org/10.5194/hess-5-13-2001
http://dx.doi.org/10.1002/hyp.1135
http://dx.doi.org/10.1002/hyp.1135
http://dx.doi.org/10.5194/hess-19-857-2015
http://dx.doi.org/10.5194/hess-19-857-2015
http://dx.doi.org/10.1016/j.jhydrol.2021.126049
http://dx.doi.org/10.1016/j.jhydrol.2021.126049
http://dx.doi.org/10.1016/j.jhydrol.2013.09.004
http://dx.doi.org/10.1016/j.jhydrol.2013.09.004
http://dx.doi.org/10.3390/su10093209
http://dx.doi.org/10.3390/su10093209
http://dx.doi.org/10.2166/hydro.2012.011
http://dx.doi.org/10.1016/j.advwatres.2011.06.005
http://dx.doi.org/10.1016/j.advwatres.2011.06.005

	0541036.pdf
	Sensitivity and identifiability analysis of a conceptual-lumped model in the headwaters of the Benue River Basin, Cameroon: implications for uncertainty quantification and parameter optimization
	INTRODUCTION
	MATERIALS AND METHODS
	Study area and data
	The study area
	Hydrometeorological data

	Methods
	Hydrological model
	Sensitivity and parameter identifiability analyses
	Model optimization, performance assessment, and uncertainty prediction


	RESULTS AND DISCUSSION
	Individual sensitivity analysis
	Global sensitivity and identifiability analysis
	Implications of sensitivity and identifiability analysis on the model uncertainty quantification
	Performance assessment and uncertainty prediction

	SUMMARY AND CONCLUSIONS
	ACKNOWLEDGEMENTS
	DATA AVAILABILITY STATEMENT
	CONFLICT OF INTEREST
	REFERENCES



