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A B S T R A C T   

Hydropower is the world’s largest producer of renewable energy and represents more than 43% of the low- 
carbon energy. However, it is sensitive to climate variability and change. This study evaluates the climate 
change impacts on hydropower potential in the headwaters of the Benue River Basin (HBRB) under 1.5 ◦C and 
2.0 ◦C global warming levels (GWLs) and quantifies the main sources of uncertainty in the modeling chain. 
Precipitation and temperature from 17 members of the Coordinated Regional Downscaling Experiment over the 
Africa domain (CORDEX-Africa) under two representative concentration pathways (RCPs 4.5 and 8.5) were used 
to run two calibrated Lumped-conceptual hydrological models (HMs) (Hydrologiska Byrans Vattenavdelning 
(HBV-Light) and HYdrological MODel (HYMOD)). An analysis of variance (ANOVA) decomposition was used to 
quantify the uncertainties related to each impact modeling chain step in the hydropower potential calculation 
process. Results reveal a high uncertainty in both climatic and hydrologic parameters. The change in precipi
tation associated with an increase in potential evapotranspiration (PET) causes a significant decrease in hy
dropower generation associated with a large uncertainty range. The ANOVA sensitivity test reveals that the 
dominant contributing source to hydropower projections uncertainty varies with GWL. Given the likely breach of 
GWL 1.5 by the early 2030s, these findings contribute information for consideration in water and energy 
planning in the region over the next decade, and stresses that these considerations are urgent for the socio
economic well-being of the region.   

1. Introduction 

Climate change is now a major concern around the World and there 
is a clear agreement that temperature increases will affect different 
mechanisms of the climate system. Since the middle of the 1990s, dis
cussions about setting targets to limit global warming by a predefined 
threshold have been actively pursued, when the so-called tolerable 

global temperature window (ranging from 9.9 ◦C to 16.6 ◦C) was 
introduced at the First Conference of the Parties (COP) of the United 
Nations Framework Convention on Climate Change (UNFCCC) in Berlin 
in 1995 [1]. In 2015, the Paris Agreement (COP21) was adopted with 
the main goal to pursue efforts to limit the global-mean temperature at 
1.5 ◦C and well below 2 ◦C above pre-industrial levels, which would 
significantly decrease the risks and impacts of climate change [2,3]. To 
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achieve the Paris Accord, renewable energy sources are being promoted 
which are clean and increasingly competitive energy sources. They are 
distinct from fossil fuels mainly by their variety, affluence and potential 
for worldwide use, but especially in the fact that they do not produce 
greenhouse gases - the cause of climate change. They also present an 
opportunity for economic development and the achievement of the UN’s 
Sustainable Development Goals (SDGs,7 and 13 [4]). Hydropower is the 
world’s largest producer of renewable energy and represents more than 
43% of low-carbon energy and 16% of the total electricity budget [5]. It 
is an efficient, flexible, reliable and environmentally friendly renewable 
source of energy, and is an option for climate change mitigation and 
adaptation in many regions [6]. The International Renewable Energy 
Agency (IRENA [7]) suggests that to meet the 2.0 ◦C target, we need 
about 850 GW of additional hydropower capacity by 2050, while to 
reach the 1.5 ◦C target, we will need at least another 1200 GW. The 
International Hydropower Association (IHA [5]) show that 26 GW of 
new hydropower capacity was put into operation, up on 21 GW installed 
in 2020’s. 

Although hydropower generation is known as an important option 
for climate change mitigation and adaptation, it is extremely sensitive to 
climate variability and change because small, sometimes insignificant 
climatic variations often result in significant changes in the availability 
and regularity of water in reservoirs, the main drivers of hydroelectric 
production [8–10]. Therefore, it is of paramount importance to under
stand the effects of climate change and variability on hydropower 
generation. 

It has been demonstrated that some regions around the world are 
more vulnerable to climate change than others even if they are least 
culpable for greenhouse gases emissions [2]. This is particularly true for 
Africa continent, which is already experiencing increasing anomalies in 
climate patterns and is expected to face more climate risks and water 
shortages for the rest of this century [11]. In many parts of Africa, a 
reduction of water resources will have a significant impact on socio
economic development through agriculture, which employs 55–62% of 
the workforce and 95% of the cropland is rain fed [11], and hydropower 
that contributes to more than 80% of electricity production in countries 
such as the Democratic Republic of Congo, Ethiopia, Malawi, 
Mozambique, Uganda, and Zambia [12]. 

Although several studies have been conducted in West, Southern and 
East Africa regions that evaluate the potential impacts of climate change 
on hydropower generation (e.g. Refs. [13–15]), very few studies have 
been conducted in Central Africa. Moreover, there is a lack of studies 
that focus on the impacts of climate change on hydropower energy 
under different GWLs in Africa and especially in Central Africa. This is 
even though recent studies [16,17] provided evidence that Central Af
rica precipitation and temperature as well as climate extremes will be 
significantly impacted at different GWLs, which will increase heat stress 
and the proportion of population at risk of discomfort [18]. Further
more, the sixth report of the Intergovernmental Panel on Climate 
Change (IPCC) establishes, albeit with limited confidence, that Central 
Africa is expected to experience an increase in extreme events under 
global warming [19]. For instance, the intensity and frequency of the 
hottest daily maximum temperature events are projected to robustly 
increase whereas those of the coldest daily minimum temperature are 
expected to decrease. Increases in the intensity and frequency of heavy 
precipitation and dry spell events are also projected. Without adapta
tion, such changes would have disastrous consequences for countries 
such as Cameroon [20] whose socio-economic activities’ depend highly 
on natural resources (rain-fed agriculture [21,22], hydroelectric power 
generation [23], transportation, fisheries, etc.) and where Malaria 
transmission follows the seasonal cycle of rainfall [24,25]. Therefore, 
the projected impacts of climate change on river discharge and hydro
power generation in Cameroonian catchments are highly important to 
understand in order to develop new adaptation strategies for water 
resource management. 

However, the impact of climate projections on river discharge is 

associated with large uncertainties. These arise from the different steps 
of the modeling chain which include emission scenarios, global climate 
models (GCMs), downscaling techniques (dynamical or statistical), hy
drological models’ structure and parameter uncertainty [26]. For better 
water management and for science-based decision making, the quanti
fication of uncertainty sources in climate-impact studies is of great 
importance. In the last decade, numerous previous studies have been 
focused on climate change impacts on hydrology and their sensitivity to 
the different sources of uncertainty [26–33]. Despite this, to date only 
few studies have been conducted over African catchments in general and 
specifically in Cameroonian catchments. In addition, few studies address 
the impacts of relatively low magnitudes of global warming - this is of 
great importance because seemingly small differences in temperature 
will have a strong impact in specific regions and ecosystems [26]. 

The study pursues three objectives: (i) to assess the consequences of 
climate change on hydro-climatic components and hydropower gener
ation in the Headwaters of the Benue River Basin (HBRB) under GWLs of 
1.5 ◦C and 2.0 ◦C above preindustrial levels; (ii) to quantify the total 
uncertainty in both projected climatic and hydrologic parameters and 
(iii) to quantify individual or combined uncertainties that come from 
different sources in the modeling chain (see Fig. 1). This paper is orga
nized as follows, after the introduction, the study area and the data 
sources are described in section 2; section 3 provides the applied 
methodology while the results and discussions are given in section 4. 
The study ends with the summary and conclusions in section 5. 

2. Study area and data 

2.1. Study area 

The study is performed for the Headwaters of the Benue River Basin 
(HBRB), the second-biggest basin in Cameroon, situated in the northern 
Cameroon (Fig. 2) among latitudes 7◦N and 11◦N, and Longitudes 12◦E 
and 16◦E, with a drainage area of 30 650 km2 at the stream gauging 
station Riao. It rises at an altitude of 1300 m on the Adamawa plateau 
and represents the biggest water provider of the Niger basin [34]. The 
HBRB is the only perennial river in northern Cameroon where many 
rivers are seasonal and dry up a few months after the end of the wet 
season. It is important to the socioeconomics of the Northern region 
thanks to its potential to sustain different water resources activities such 
as irrigated agriculture, hydroelectricity production, navigation, in
dustry, domestic use and breeding [35]. Moreover, in 1982, the Lagdo 
dam was built with an installed capacity of 72 MW and there is an 
ongoing project that aims to increase hydropower and irrigation ca
pacity of the dam to supply electricity to other countries, including the 
Chad Republic, northern Nigeria and part of the Central African Re
public [36]. However, this basin experiences water-related hazards such 
as droughts and floods [37–40]. Additionally, recent research showed an 
increase/decrease trend in annual air temperature/precipitation 
[41–43], and an increase of drought magnitude and intensity under 
changing environmental conditions [44,45]. This suggests the region is 
likely to experience drier conditions [23], making the HBRB region (in 
particular) an important case study. 

The basin enjoys a tropical humid climate with two main seasons: the 
rainy season stretches from May to October and the dry season from 
November to April. It’s a unimodal rainfall region (maximum in August) 
with annual rainfall ranges between 900 and 1500 mm [43] which de
creases gradually from the south (the highland of the Adamawa plateau) 
to the north of the basin (Chad plain). In contrast to rainfall, temperature 
in the basin increases gradually from the south to the north with the 
annual mean temperature of 28 ◦C. The savanna is the predominant 
vegetation in the area and the elevation varies between 220 and 2260 m, 
characterized by major hills, including Adamawa Plateau, Alantika and 
Mandara mountains [43]. 
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2.2. Observed hydrometeorological data 

In this study we used both daily meteorological and hydrological 
data to calibrate and validate the hydrological models. The meteoro
logical data include rainfall for 25 stations and mean air temperature 
from 4 stations located in the basin. These data were provided by the 
Department of the National Meteorology of Cameroon (DNM) while the 
potential evapotranspiration (PET) was computed using the Hamon 
temperature-based method [46]. This method has been extensively used 
in climate change impact studies [23,47,48] and has been found to be 
one of the most sustainable temperature-based methods in the Benue 
River Basin [49]. Names, geographic positions, data record periods as 
well as data quality assessment can be found in Refs. [49,50]. 

Daily streamflow data measured at the Riao gauging station located 
in the basin were obtained from the environmental information system 
for water resources (SIEREM) database ([51], http://hydrosciences.fr 
/sierem). Streamflow records were available from 1950 to 1999 equiv
alent to 591 months with 08.97% of missing months. 

2.3. Climate models data 

The daily meteorological variables required for the hydrological 
analysis of projected water resources and hydropower generation vari
ability (precipitation and mean air temperature), were obtained from 17 
CORDEX-Africa climate simulations. CORDEX is a global programme 
whose aim is to downscale coarse-scale global climate model projections 
(GCMs) to finer scales over every continental land mass of the world and 
make these data freely available for download on the Earth System Grid 
Federation (ESGF). In this study we use CORDEX-Africa data from 5 
regional climate models (RCMs) that downscaled 9 GCMs of the 5th 
Coupled Model Intercomparison Project (CMIP5 [52]) under two 
representative concentration pathways, RCPs 4.5 and 8.5, to a resolution 
of 0.44◦. These data were extracted over our region of interest and used 
to force the hydrological model. We adopt a Global Warming Levels 
(GWLs) analysis method as described in Ref. [53]. Here, the period 
1861–1890 is used to define the pre-industrial period against which each 
GWL is calculated. The timing of GWLs for each GCM is defined as the 
first time the center year of a 30-year moving average of projected global 
temperature is above 1.5 or 2 ◦C compared to the pre-industrial tem
perature. Thereafter, for each RCM downscaling, the same GWL timing 

Fig. 1. Impact modeling chain for hydrological projections used in this study (adopted and modified from Ref. [31]).  

Fig. 2. Study catchment: basin drainage area and rainfall and hydrological stations.  
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of the corresponding driving GCM is used to extract data from a 30-year 
period for the analysis. For example, if a GCM exceeds 1.5◦ the 
pre-industrial temperature in 2035 according to the method described 
above, 30 years of daily data from the RCM that downscaled that GCM, 
centered on 2035 is extracted for use in the hydrological modelling. The 
1.5 ◦C and 2 ◦C responses are extracted from transient experiments by 
selecting time samples at the date when the 30-year running mean 
global temperature reaches 1.5 ◦C or 2.0 ◦C compared to a control period 
(CTL), 1971–2000. A list of RCM–GCM combinations and the future 
30-year periods of GWLs 1.5 ◦C and 2.0 ◦C are given in Table 1. 

To ascertain the possible scenario of avoiding the impacts of higher 
warming at 2.0 ◦C above pre-industrial levels, the avoided impacts (AI) 
caused by additional 0.5 ◦C warming is computed using Eq. (1): 

AI =
[

GWL2.0 − GWL1.5

GWL2.0

]

× 100 (1) 

The good performance of the models considered in the representa
tion of the mean state of the Central African climate has been extensively 
evaluated in previous studies (e.g. [54–61]: among others). 

3. Material and methods 

3.1. Hydrological models 

In this study, we used two hydrological models namely HBV-Light 
[62] and HYMOD [63,64]. There are Conceptual-Lumped rainfall-run
off models working at the daily time-step and simulating discharge using 
day-to-day precipitation and PET as inputs and differ from their struc
tures and complexities. HBV-Light model is a nine-parameters model 
and consists of three main routines including snow and snow cover, soil 
moisture and evaporation, and groundwater and response processes 
represented by two mains reservoirs. The HYMOD is a five-parameter 
model based on the probability-distributed theory proposed by 
Ref. [65] which assumes that the soil moisture reservoirs within a 
catchment have variable depths. Additionally, HYMOD consists of two 
main routines, including soil moisture and evaporation routine, repre
sented by a nonlinear soil moisture reservoir and response routine rep
resented by three fast-flow reservoirs and one slow-flow reservoir. 
Table 2 provides the definition of the parameters used to simplify the 
hydrological processes considered in the models as well as their initial 
ranges while the schematic representation of these processes is shown in 
Fig. 3. 

The model calibration and uncertainty analysis were conducted 
using the Monte Carlo procedure [66]. Using the random number from a 
uniform distribution within the initial ranges of each model parameter, 

50 000 parameter sets were generated. For each parameter set, the 
model was run, and the simulations were screened into behavioral and 
non-behavioral parameter sets using a threshold value of Kling–Gupta 
efficiency (KGE ≥ 0.75 [67]) for very good simulations. To test the 
reproducibility of the best optimized parameter set during the validation 
period, both graphical (visual hydrograph comparison as well as flow 
duration curves) and statistical performance criteria were used. This 
include in addition to KGE, Nash and Sutcliffe Efficiency (NSE [68]), 
Percent Bias (PBIAS [69]), Pearson correlation coefficient (R2 [69]), 
standardized root mean square error (RSR [69]). Descriptions and 

Table 1 
Timing of 30-year period of targeted GWLs as a function of RCPs and corresponding driving GCM and RCM.  

Driving GCMs RCMs RCP4.5 RCP8.5 

1.5 ◦C 2.0 ◦C 1.5 ◦C 2.0 ◦C 

CanESM2 SMHI-RCA4 2002–2031 2017–2046 1999–2028 2012–2041 
IPSL-CM5A-MR SMHI-RCA4 2002–2031 2020–2049 2002–2031 2016–2045 
CNRM-CM5 SMHI-RCA4 

CLMcom-CCLM4-8-17 
2021–2050 2042–2071 2015–2044 2029–2058 

CSIRO-Mk3-6-0 SMHI-RCA4 2020–2049 2033–2062 2018–2047 2030–2059 
EC-EARTH-r12 SMHI-RCA4 

CLMcom-CCLM4-8-17 
2010–2039 2031–2060 2005–2034 2021–2050 

EC-EARTH-r3 DMI-HIRHAM5 2009–2038 2030–2059 2006–2035 2023–2052 
EC-EARTH-r1 KNMI-RACMO22E 2006–2035 2028–2057 2003–2032 2021–2050 
HadGEM2-ES SMHI-RCA4 

CLMcom-CCLM4-8-17 
KNMI-RACMO22E 

2016–2045 2032–2061 2010–2039 2023–2052 

MIROC5 SMHI-RCA4 2026–2055 2059–2088 2019–2048 2034–2063 
MPI-ESM-LR SMHI-RCA4 

CLMcom-CCLM4-8-17 
MPI-CSC-REMO2009 

2006–2035 2029–2058 2004–2033 2021–2050 

NorESM1-M SMHI-RCA4 2027–2056 2062–2091 2019–2048 2034–2063  

Table 2 
Description of parameters of the two conceptual rainfall–runoff models and their 
ranges used for the Monte Carlo procedure [62,64].  

Hydrological 
model name 

Parameter 
name 

Definition unit Initial 
range 

HBV-Light FC Maximum value of soil 
moisture storage 

mm 50–500 

LP Fraction of FC above 
which actual ET equals 
potential ET 

– 0.3–1 

β Shape parameter for the 
soil moisture 
distribution function 

– 1–6 

K0 Near-surface flow 
routing rate constant 

day− 1 0.05–0.5 

K1 Interflow routing rate 
constant 

day− 1 0.01–0.3 

K2 Baseflow routing rate 
constant 

day− 1 0.001–0.1 

UZL Threshold for Q0 flow mm 0–100 
PERC Coefficient of 

percolation between the 
upper and lower 
groundwater boxes 

day− 1 0.01–0.1 

MAXBAS Length of triangular 
weighting function in 
routing routine 

day 1–5 

HYMOD SM,max Maximum soil storage 
capacity of a catchment 

mm 1–500 

Bexp Degree of spatial 
variability of soil 
moisture capacity 

– 0.1–2 

Alpha Partitioning factor 
between fast and slow 
routing reservoirs 

– 0.1–0.99 

RF Residence time of quick- 
flow reservoirs 

day− 1 0.1–0.99 

RS Residence time of slow- 
flow reservoir 

day− 1 0.001–0.1  
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formulations of these statistical criteria can be found in Refs. [49,50,69]. 

3.2. Assessment of the impacts on hydropower potential 

The projected impacts of climate change on the gross hydropower 
potential were evaluated in Lagdo dam, which has an installed capacity 
of 72 MW and with an average head fall of 25 m. The gross hydropower 
potential is the total amount of electricity that could potentially be 
generated if all available water resources were devoted to this use. It is 
obtained by converting the potential and kinetic energy of water into 
electrical energy by electromechanical means (turbines and generators). 
Hydropower potential is estimated based on the streamflow, hydraulic 
head i.e. elevation gradient in this case and the total plant efficiency, as 
shown in Eq. (2) [8,70]: 

Np =Q × H × ρw × g × η (2)  

where Np is the gross hydropower potential (W), Q is the streamflow 
(m3/s), H is the hydraulic head (m), ρw is the water density (kg/ m3), g is 
the gravitational acceleration (m/s2) and η is the total plant efficiency 
(%). 

Historical and future stream flows simulated by the two calibrated 
hydrological models were used to estimate both historical and future 

hydropower potential through Eq. (2). 

3.3. Uncertainty quantification and decomposition: ANOVA sensitivity 
test 

In this study, we use a sensitivity test based on the ANalysis Of 
VAriance (ANOVA [71]) to allocate and quantify the main sources of 
uncertainty in the modeling chain. ANOVA is a statistical test for 
detecting differences in group means when there is one parametric 
dependent variable and one or more independent variables [26]. In 
ANOVA, the total sum of squares (SST, Eq. (3)) is used to express the 
total variation that can be attributed to the various groups [26]. The four 
groups used for variance decomposition in this study are the GCMs, 
RCMs, HMs and RCPs: 

SST =
∑NRCP

i=1

∑NGCM

j=1

∑NRCM

k=1

∑NHM

l=1

(
Xijkl − X

)2 (3)  

where Xijkl is the value of hydro-climate variable X corresponding to RCP 
i, GCM j, RCM k and HM l respectively and X is the overall mean. 

SST can be further divided into four main effects (SSRCP, SSGCM, 
SSRCM and SSHM, the squared deviations of single values from their 

Fig. 3. Schematic representation of the different hydrological processes in the two hydrological models: (A) HBV-Light model [62] and (B) HYMOD [64].  
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appropriate factor mean) which are effects directly attributable to RCPs, 
GCMs, RCMs and HMs, and into Residuals variance (SSResiduals): 

SST = SSRCP + SSGCM + SSRCM + SSHM + SSResiduals (4) 

Then for each uncertainty source Y, its contribution (η2
Y) to the 

overall uncertainty of X is calculated as follows: 

η2
Y =

SSY

SST
(5) 

These indices range in value from 0 (no effect) to 1 (maximal effect) 
because they are proportions of variance. 

To test the significance of each uncertainty source (RCPs, GCMs, 
RCMs and HMs) to the total uncertainty, we use the F-test [71]. This is a 
statistical test used in hypothesis testing to examine whether the vari
ances of two groups are equal or not. The null hypothesis states that the 
population means for each group of the independent variable are equal, 
while the alternative hypothesis is that at least two of the group means 
differ. The ANOVA test statistic called Fscore is calculated as: 

Fscore =
MeanSquaresBetweenGroups

MeanSquaresWithinGroups(Residual)
(6)  

where the MeanSquaresBetweenGroups term, is an indirect measure of dif
ferences in group means, while the MeanSquaresWithinGroups(Residual) term, is 
considered to represent statistical noise/error since this variance is not 
explained by the effect of the independent variable on the dependent 
variable. Thus, for independent groups, high Fscores result from large 
differences between group means and/or small variances within groups. 
In addition, higher Fscores corresponds to lower p-values, with the p-value 
also influenced by the sample size and the number of groups, each of 
which are distinct types of “degrees of freedom” [71]. 

4. Results and discussion 

4.1. Hydrological models evaluation results 

The comparison between observed and modeled hydrographs in this 
watershed during the model calibration and validation are shown in 
Figs. 4 and 5, while the values of efficiency are given in Table 3. 

We noticed that the two models reproduced the dynamic (timing and 
magnitude of measured discharge) well of the catchment. The models 
also capture the various parts of the hydrograph well. However, low 

flows are more accurately simulated than high flows, which are 
comparatively underestimated in magnitude throughout the watershed. 
The results also exhibit the strong relationship between the modeled and 
measured discharge during the calibration and validation period (with 
R2 ≥ 0.88) indicating good model performance. This result is reinforced 
by the NSE and KGE greater than 0.75 obtained during the model 
optimization and validation. Consistent with [69], this model is classed 
as very good within the HBRB. This result is consolidated by the narrow 
band of model uncertainty prediction for the behavioral parameter sets 
(Figs. 4 and 5) with the R-factors <1.5 obtained during the calibration 
and validation period of the two models. According to Ref. [72], this 
result is satisfactory. We also noticed that the best simulation with 
respect to the measured streamflow lies inside this narrow uncertainty 
band with P-factors ≥ 40%. This highlights that modeled discharge 
agrees with the observations perfectly, indicating the two hydrological 
models perform well and therefore can be used for impact studies. 

4.2. Projected change in precipitation, temperature, and PET under 
different GWLs 

Fig. 6 shows the projected change in monthly, seasonal and annual 
precipitation, temperature and PET averaged over the whole basin area 
under 1.5 ◦C and 2.0 ◦C GWLs, as well as the AI caused by additional 
0.5 ◦C warming based on the CORDEX simulations. 

An analysis of mean monthly precipitation indicates that there is no 
change signal during the dry months (except April), while there is a 
mixed change signal during the rainy season from both GWLs and RCPs 
scenario which is associated with a large band of uncertainty compared 
to dry months. At GWLs of 1.5 ◦C (2.0 ◦C) under RCP4.5 scenario, the 
rainiest months (July and August) exhibit an increase of rainfall with an 
ensemble median of 4.98%(9.17%) and 5.67%(9.29%) while the other 
rainy months (May, June, September and October) exhibit a slightly 
decrease of rainfall with an ensemble median ranges from − 3 to − 1% 
and − 4.5 to − 2% under 1.5 ◦C and 2.0 ◦C GWLs respectively for RCP4.5. 
Under RCP8.5, we note a slight difference. Except for October, all the 
rainy months exhibit an increase of rainfall with an ensemble median 
ranging from 2.5 to 6.2% and 0.5–13.5% under 1.5 ◦C and 2.0 ◦C GWLs 
respectively. For both GWLs and RCPs scenario, August, the month of 
maximum rainfall in the HBRB, exhibits the highest change signal. The 
results also reveal that rainfall will increase at the end of the dry season 
(April), while there will be a decrease at the end of the rainy season 

Fig. 4. Calibration of HBV-Light and HYMOD models: (a) time series plot for HBV-Light calibration, (b) flow duration curves for HBV-Light calibration, (c) time 
series plot for HYMOD calibration, and (d) flow duration curves for HYMOD calibration. Uncertainty band for acceptable simulations. 
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(October). This means that under each GWL, RCMs projected an earlier 
rainfall onset and retreat dates in the HBRB. 

Seasonally, June-July-August (JJA) season, which is the wettest 
season in this region, exhibits an increase of rainfall with an ensemble 
median of 0.61%(3.41%) and 5.88%(6.22%) under RCP4.5(RCP8.5) for 
1.5 ◦C and 2.0 ◦C GWLs respectively. This result is similar to those of 
[59], who found that the total amount of precipitation above the 95th 
percentile increases significantly during the monsoon months. 
September-October-November (SON) season exhibits an increase of 
rainfall under RCP8.5 for both 1.5 ◦C and 2.0 ◦C GWLs. This result is 
slightly different under RCP4.5 which exhibits a small decrease with an 
ensemble mean of 0.5% for the two considering GWLs. 
December-January-February (DJF) season doesn’t exhibit a change 
signal contrary to March-April-May (MAM) season there is a mixed 
signal. Annually, rainfall will slightly increase under both GWLs and 
RCPs scenario with the maximum increase (with an ensemble median of 
2.06%) obtained under RCP8.5 scenarios and 2.0 ◦C GWL. This result is 
consistent with those of [73,74] who found that this region will expe
rience increases in rainfall intensity and water related disasters - floods 
and droughts which will most affect the agricultural production. It is 
also clear from this figure that the additional 0.5 ◦C warming will affect 
the rainfall. We not the seasonal results do not reflect the earlier onset 
and retreat projection that the monthly analysis above reveals. 

The changes in temperature and PET show similar patterns with 
potential increases under both scenarios and GWLs. Monthly, seasonal 
and annual PET is expected to increase with an increase in GWLs. This 
result was expected given that temperature and PET are strongly 
correlated [23]. We also notice that during dry months/seasons, climate 
models exhibit a large band of uncertainty in temperature and PET 
changes compared to rainy months/seasons. 

4.3. Projected change in water recharge under different GWLs 

The water recharge here is the amount of precipitation that directly 
contributes to runoff or the amount of water available for runoff and is 
particularly important for hydropower generation. Monthly, seasonal 
and annual projected impacts of climate change in water recharge are 
displayed in Fig. 7. 

The dry months (November to April) don’t exhibit a change signal 
thanks to the absence of rainfall during this period. However, during 
rainy months (May to October), mean water recharge is projected to 
decrease with an increased GWLs under different RCPs scenario. The 
maximum decrease in water recharge is obtained during September 
under GWLs and RCPs. Seasonally, JJA and SON seasons exhibit a strong 
decrease change signal. Annual water recharge is projected to decrease 
with an ensemble median of − 8.12% (− 5.67%) and − 12.14% (− 9.40%) 
under RCPs4.5 (8.5) at 1.5 ◦C and 2.0 ◦C GWLs respectively. Under 
RCP4.5, the decrease of the water recharge is higher than that under 
RCP8.5 for all GWLs. 

4.4. Projected change in hydropower potential under different GWLs 

Monthly, seasonal and annual projected impacts of climate change 
on hydropower potential under both RCPs scenarios and GWLs are 
displayed in Fig. 8. 

This figure clearly shows that the dry months (November to April) 
did not exhibit a change signal. This is due to the absence of precipita
tion during this period, which is the natural mechanism responsible for 
the water supply in the watershed. During the rainy months (From May 
to October), there is a clear consensus about climate and hydrological 
models that hydropower potential will decrease under both GWLs and 
RCPs with a greater reduction under RCP4.5. The JJA and SON seasons 
exhibit a higher change signal compared to DJF and MAM seasons. 

Fig. 5. Same as Fig. 4 but during the validation period.  

Table 3 
Statistical summary of the model’s performance for the calibration and validation periods in the UBRB.  

Models  KGE NSE RSR PBIAS (%) R2 P-factor R-factor 

HBV-Light Calibration 0.88 0.86 0.38 − 1.96 0.93 0.83 1.49 
Validation 0.83 0.78 0.48 18.06 0.90 0.78 1.30 

HYMOD Calibration 0.85 0.84 0.40 − 2.31 0.92 0.41 − 0.14 
Validation 0.83 0.76 0.49 16.8 0.88 0.43 − 0.16  
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Fig. 6. Projected change in monthly, seasonal and annual Rainfall, 2-m air temperature and Potential Evapotranspiration (PET) at 1.5 ◦C and 2.0 ◦C GWLs as well as 
change associated with the additional 0.5 ◦C warming. In all the box and-whisker plots, the whiskers represent the minimum and maximum of the change signal. The 
outer edges of the boxes and the horizontal lines within the boxes represent the 25th, 75th, and 50th (median) percentiles of the change signal. The filled circle 
represents the average value of the change signal. 
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Annual hydropower generation is also projected to decrease with an 
ensemble median of − 8.26%(− 5.60%) and − 13.35%(− 8.95%) under 
RCPs 4.5(8.5) at 1.5 ◦C and 2.0 ◦C GWLs respectively. This finding is 
consistent with those of [75,76] who found that hydro-energy generated 
at Lagdo dam in the Benue basin may suffer a significant decrease due to 
climate change. This feature is common with other studies previously 
done in sub-Saharan African catchments [13,14]. 

4.5. Uncertainty estimation and decomposition for hydropower potential 
projections 

ANOVA statistical test was used to decompose the uncertainty in the 
computed hydropower potential and to identify the contribution of five 
sources of uncertainties, i.e. RCPs, GCMs, RCMs, HMs, and residuals 
variance. Fig. 9 shows the contribution of each uncertainty source to the 
total uncertainty on hydropower potential projections under different 
GWLs, whereas Table 4 presents the results of the significance test (F- 
test). In general, the uncertainty is dominated by variance associated 

with the residuals. We note that the main four uncertainty sources’ 
(RCPs, GCMs, RCMs, HMs) contribution to hydropower potential pro
jections vary according to the GWLs. At 2.0 ◦C GWL, uncertainty is 
largely dominated by RCMs, follow by GCMs and RCPs scenarios with 
statistically significant effects at the 99.9%, 99% and 95% confidence 
level respectively. Whereas at 1.5 ◦C GWL, the contribution of GCMs is 
dominant followed by RCMs with statistically significant effects at the 
99.9% and 99% confidence interval respectively. For the AI caused by 
additional 0.5 ◦C warming, we note that GCMs largely contributed to the 
total uncertainty with a statistically significant effect on hydropower 
projections followed by RCMs, but without with a statistically signifi
cant effect. In summary, the climate models (both GCMs and RCMs) are 
the dominant sources of uncertainty on hydropower projections under 
different GWLs. This result is consistent with many previous studies that 
found that climate models are the major contributor to uncertainty in 
future streamflow projections [27,33] but without considering the 
different GWLs and without evaluating the statistical significance of the 
findings. 

Fig. 7. Projected change in monthly, seasonal and annual water recharge at 1.5 ◦C and 2.0 ◦C GWLs as well as change associated with the additional 0.5 ◦C warming.  

Fig. 8. Projected change in monthly, seasonal and annual hydropower potential of the Lagdo dam located in the HBRB at 1.5 ◦C and 2.0 ◦C GWLs as well as change 
associated with the additional 0.5 ◦C warming. 
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5. Conclusions 

In the region where water is the most significant factor for socio
economic development and where hydroelectricity accounts for about 
70% of electricity, quantifying uncertainty within the impact modeling 
chain for hydrological projections is important to provide information 
for science-based decision making and the development of robust 
climate adaptation plans. The aim of this study was to assess the impacts 
of climate change on hydropower potential under two GWLs, their 
associated uncertainties and the contribution of each uncertainty source 
in the modeling chain. Precipitation and temperature from 17 CORDEX- 
Africa members under two representative concentration pathways 
(RCPs 4.5 and 8.5) were used to run two calibrated Lumped-conceptual 
hydrological models (HMs) (HBV-Light and HYMOD). An analysis of 
variance (ANOVA) decomposition was used to quantify the uncertainties 
related to each impact modeling chain step for hydrological projections 
and hydropower potential calculation process, namely RCP scenarios, 
GCMs, RCMs and HMs. The principal findings of this research are:  

● The performance assessment of the two hydrological models reveals 
that the best simulation versus measured discharge is within the 
band of uncertainties in the model prediction. This highlights that 
modeled discharge agrees with the observations perfectly, indicating 
the hydrological models perform well, and that their application for 
supporting water resources management strategies within this basin 
is possible.  

● Despite uncertainties, annual rainfall is projected to slightly increase 
while temperature and PET are projected to increase under both 
GWLs and RCPs scenario. This change is projected to increase/ 
decrease with the increasing GWLS. This increase in temperature and 
PET will offset the projected increased rainfall considerably increase 
crop water and irrigation demand and the region will experience 
environmental drier conditions which will negatively impact agri
cultural production.  

● The increase in PET and change in rainfall will significantly impact 
the water availability and quantity in the HBRB which negatively 
affects the water recharge, streamflow and hydropower potential of 
the Lagdo dam. 

● The uncertainty decomposition based on ANOVA statistical test re
veals that climate models (both GCMs and RCMs) are the dominant 
and significant sources of uncertainty in the impact modeling chain 
for hydropower projections under both GWLs. At the 2.0 ◦C GWL, 
uncertainty is largely dominated by RCMs, whereas in 1.5 ◦C GWL, 
contribution of GCMs is greater.  

● The additional warming of 0.5 ◦C will change the hydrological cycle 
and water availability in the HBRB, with potential to cause chal
lenges to water resource management, hydro-power production, 
agriculture, sanitation and ecosystems. GCMs are found to be the 
largest and significant contributor of uncertainty in the modeling 
chain. 

Findings from this research should alert the water resources planners 
and the decision-makers about the sensitivity of the water resources and 
hydro-energy under GWLs in this region. This research will also help 
towards the development of early warning systems and risk assessment 
in the Cameroonian catchments to develop capabilities to mitigate the 
effects of climate uncertainty. It will also help to develop the new vision 
of water resources management, long term strategy for electricity pro
duction and planning of water needs. This is an urgent issue as the 1.5 
GWL may be breached as soon as the early 2030s [77]. 

One limitation of this research is that we used uncorrected climate 
data for hydrological simulations which could be the main causes of the 
importance of the residuals errors in the total uncertainty. In addition, 
the uncertainty from hydrological model parameters were not consid
ered. In further studies, we plan to use different bias-correction tech
niques to avoid systematic bias and consider hydrological parameter 
uncertainty to better assess the contribution of each source to the total 

Fig. 9. Contribution of different sources to uncertainty in annual hydropower potential projections under different GWLs.  

Table 4 
Results of significance statistical test (F-test) (*test significant at the 95% con
fidence level (ρ < 0.05; **test significant at the 99% confidence level (ρ < 0.01); 
***test significant at the 99.9% confidence level (ρ < 0.001)).  

Effects 1.5 ◦C GWL 2.0 ◦C GWL Additional 0.5 ◦C 
warming 

F- 
score 

P-value F- 
score 

P-value F- 
score 

P-value 

RCPs 2.34 0.1322 5.67 0.0209* 1.84 0.1811 
GCMs 5.52 0.000044*** 3.70 0.0017** 3.07 0.0064** 
RCMs 4.85 0.00208** 8.07 0.000037*** 2.43 0.0591. 
HMs 1.92 0.1719 2.45 0.1238 0.66 0.4208  
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uncertainty. 

Data availability 

The climate model outputs are freely available through the Earth 
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projects/esgf-dkrz/”. The Meteorological and hydrological data are the 
properties of the Department of the National Meteorology of Cameroon 
(DNM) and the SIEREM/HSM database respectively. 
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